7th Grade Review Sheet Wow-----We have learned a ton of chemistry this year....here are the highlights.

1. Basic atomic structure and theory of what the atom looks like (atomic theory)

a. There are 3main particles that make up the atom

The ______ (_____ charge) and the ______ (______ charge) are located in the nucleus of the atom.

The ______ charge) is located in the ______ and is used in bonding. The ______ used in bonding are called ______.

b. Dalton's Model:

c. Thomson's Model:

d. Rutherford's Model:

e. Bohr's Model:

f. Current Atomic Model:

g. Using the "MAN" method to find how many neutrons an element has.

Mass (rounded)- Atomic#= #Neutrons

How many neutrons does Rubidium have?_____

How many neutrons does Boron have?_____

How many neutrons does Chlorine have?_____

2. Periodic Table:

a. Who came up with/organized the Periodic Table?

b. The columns in the Periodic Table are called ______ and the elements in those columns all have the same number of ______ and similar chemical properties.

c. The rows in the Periodic Table are called ______ and the elements in the rows increase by 1 ______ for each number they go up.

Groups in the Periodic Table:

Alkali:

Alkaline Earth Metals:

Transition Metals:

Halogens:

Noble Gases:

3. Chemical vs. Physical Change

Characteristics of a chemical change (a chemical change occurs when a new substance is created)

Characteristics of a physical change (a physical change is when no new substance is created) ******change of state is a physical change!!

3. Law of Conservation of Mass (which we prove through balancing of chemical equations!!!) states that matter is neither created or destroyed during a chemical or physical change

4. Practicing balancing chemical equations (make sure you show your work and make your chart!!)

a. counting elements (remember, if it has a subscript $Al_2=2$, If it has a coefficient, you multiply the subscript by the coefficient $4Al_2=8$, if it has () you need to multiply it $(Al_2)_3=6$put it all together.... $4(Al_2)_3=24$

3H₂O=____

 $2(PO_4)_2 =$ _____

 $2H_2SO_4=$

b. balancing the equations

 $\underline{\qquad}Li + \underline{\qquad}GdCl_3 \rightarrow \underline{\qquad}Gd + 3LiCl$

 $2Bi(NO_3)_3 + \underline{H}_2S \rightarrow \underline{Bi}_2S_3 + 6HNO_3$

5. Exothermic vs. Endothermic Reactions

a. in an ______ reaction heat is released, thus temperature of the products is increased.

b. in an ______ reaction heat is absorbed, thus temperature of the products is decreased.

6. Bohr Diagrams

Bohr diagrams are used to show how many electrons (and what energy shell) are in each element (remember though---we are only doing this for the first 20 elements and the energy shells become full 1^{st} shell=2, 2^{nd} shell= 8, 3^{rd} shell= 8, 4^{th} shell=2.....then things get wonky----so we stop before we get to the transition metals⁽ⁱ⁾)

a. draw a Bohr diagram for element 5, 12, 19 and write what energy level the electrons are in

7. Lewis Structures

Lewis structures are used to show how many valence electrons an element has. A quick way to do this is to see what family it is in (again----we are ignoring the transition metals). The family #(1, 2, 13, 14, 15, 16, 17, 18) is how many valence electrons the element has.

Draw the Lewis Structure for Phosphorus, Cesium and Xenon

8. Ionic Bonds: Ionic Bonds are between a ______charged metal and a _____charged non-metal.

An element becomes positively charged when it _____ an electron(s)

An element becomes negatively charged when it _____an electron(s)

Draw the ionic bond (show the before—with Lewis Structures, the charges, then the final with the full shell Lewis structure and the charges)

Cesium Chloride (CsCl)

Calcium Oxide (CaO)

Sodium Oxide (Na₂O)